Richard Healey (adpce.ad) Subject: FW: 11-17-23 Weekly Update EDC Weekly Update 17 Nov 2023.docx; EFFLUENT LOGSHEET 2023.xls **Attachments:** From: Charles McDowell < CMcDowell@Isbindustries.com> Sent: Friday, November 17, 2023 1:59 PM To: Richard Healey (adpce.ad) <Richard.Healey@adeq.state.ar.us>; Water-Enforcement-Report <Water-Enforcement- Report@adeq.state.ar.us> Cc: Keith Long <klong@lsbindustries.com>; Derek Turner <DTurner@lsbindustries.com> Subject: RE: 10/6/2023 Weekly Update Mr Healey, Attached is the weekly update with the effluent data. If you have any questions, feel free to contact me. Charles McDowell | Environmental Leader | LSB INDUSTRIES, Inc. (NYSE: LXU) | El Dorado Chemical Plant | 4500 North West Avenue, El Dorado, Arkansas 71731 ☎ O: 870-863-1403 | 🚨 M: 870-310-6696 | 🚨 E: email cmcdowell@lsbindustries.com From: Charles McDowell Sent: Friday, November 10, 2023 12:27 PM To: 'Richard Healey (adpce.ad)' <Richard.Healey@adeq.state.ar.us>; 'Water-Enforcement-Report' <water-enforcementreport@adeq.state.ar.us> Cc: Keith Long <klong@lsbindustries.com>; Derek Turner <DTurner@lsbindustries.com> Subject: RE: 10/6/2023 Weekly Update Mr Healey, Attached is the weekly update with the effluent data. If you have any questions, feel free to contact me. Charles McDowell | Environmental Leader | LSB INDUSTRIES, Inc. (NYSE: LXU) | El Dorado Chemical Plant | 4500 North West Avenue, El Dorado, Arkansas 71731 ☎ 0: 870-863-1403 | 🚨 M: 870-310-6696 | 🙆 E: email cmcdowell@lsbindustries.com From: Charles McDowell Sent: Friday, November 3, 2023 1:26 PM To: 'Richard Healey (adpce.ad)' <Richard.Healey@adeq.state.ar.us>; 'Water-Enforcement-Report' <water-enforcementreport@adeq.state.ar.us> Cc: Keith Long <klong@lsbindustries.com>; Derek Turner <DTurner@lsbindustries.com> Subject: RE: 10/6/2023 Weekly Update Mr Healey, Attached is the weekly update with the effluent data. We are currently in the waiting stage on several projects. If you have any questions, feel free to contact me. | Charles McDowell Environmental Leader LSB INDUSTRIES, Inc. (NYSE: LXU) El Dorado Chemical Plant 4500 North | |--| | West Avenue, El Dorado, Arkansas 71731 | | ☎ O: 870-863-1403 | | From: Charles McDowell Sent: Thursday, October 26, 2023 3:33 PM To: 'Richard Healey (adpce.ad)' < Richard. Healey@adeq.state.ar.us>; 'Water-Enforcement-Report' < water-enforcement- | | report@adeq.state.ar.us> | | Cc: Keith Long < klong@lsbindustries.com >; Derek Turner < DTurner@lsbindustries.com > Subject: RE: 10/6/2023 Weekly Update | | Mr Healey, Attached is the weekly update with the effluent data. There are two data points for Nitrate in Lake Kildeer that appear to be laboratory errors, this in noted in the report, but not in the spreadsheet. If you have any questions, feel free to contact me. | | Charles McDowell Environmental Leader LSB INDUSTRIES, Inc. (NYSE: LXU) El Dorado Chemical Plant 4500 North West Avenue, El Dorado, Arkansas 71731 C: 870-863-1403 M: 870-310-6696 E: email cmcdowell@lsbindustries.com | | | | From: Charles McDowell Sent: Friday, October 20, 2023 10:34 AM To: 'Richard Healey (adpce.ad)' < Richard. Healey@adeq.state.ar.us>; 'Water-Enforcement-Report' < water-enforcement- | | report@adeq.state.ar.us> Cc: Keith Long < <u>klong@lsbindustries.com</u> >; Derek Turner < <u>DTurner@lsbindustries.com</u> > Subject: RE: 10/6/2023 Weekly Update | | Mr Healey,
Attached is the weekly update with the effluent data. If you have any questions, feel free to contact me. | | Charles McDowell Environmental Leader LSB INDUSTRIES, Inc. (NYSE: LXU) El Dorado Chemical Plant 4500 North West Avenue, El Dorado, Arkansas 71731 | | ☎ O: 870-863-1403 ☐ M: 870-310-6696 ⚠ E: email <u>cmcdowell@lsbindustries.com</u> | | From: Charles McDowell < CMcDowell@lsbindustries.com > Sent: Friday, October 13, 2023 1:56 PM | | To: Richard Healey (adpce.ad) < <u>Richard.Healey@adeq.state.ar.us</u> >; Water-Enforcement-Report < <u>water-enforcement-report@adeq.state.ar.us</u> > | | Cc: Keith Long < klong@lsbindustries.com >; Derek Turner < DTurner@lsbindustries.com > Subject: RE: 10/6/2023 Weekly Update | | Mr Healey, Attached is the weekly update with the effluent data and as requested the Black and Veatch report. If you have any questions, feel free to contact me. | West Avenue, El Dorado, Arkansas 71731 O: 870-863-1403 | M: 870-310-6696 | E: email cmcdowell@lsbindustries.com Charles McDowell | Environmental Leader | LSB INDUSTRIES, Inc. (NYSE: LXU) | El Dorado Chemical Plant | 4500 North From: Richard Healey (adpce.ad) < Richard.Healey@adeq.state.ar.us> Sent: Friday, October 13, 2023 1:22 PM To: Charles McDowell < CMcDowell@lsbindustries.com> Cc: Keith Long <klong@lsbindustries.com>; Derek Turner <DTurner@lsbindustries.com> Subject: RE: 10/6/2023 Weekly Update **CAUTION:** This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe. #### Charles EDCC weekly report references a corrective action report by Black & Veatch. DEQ is requesting a copy of the this report. If you have any questions, please do not hesitate to ask. **Thanks** Richard C. Healey | Enforcement Branch Manager Division of Environmental Quality | Office of Water Quality 5301 Northshore Drive | North Little Rock, AR 72118 t: 501-682-0640| e: richard.healey@adeq.state.ar.us From: Charles McDowell < CMcDowell@lsbindustries.com > Sent: Friday, October 6, 2023 11:42 AM To: Water-Enforcement-Report < Water-Enforcement-Report@adeq.state.ar.us> **Cc:** Richard Healey (adpce.ad) < <u>Richard.Healey@adeq.state.ar.us</u>>; Keith Long < <u>klong@lsbindustries.com</u>>; Derek Turner <DTurner@lsbindustries.com> Subject: RE: 10/6/2023 Weekly Update Please find attached the weekly update, stratification memo, and updated 2023 water parameters for El Dorado Chemical Company. If you have any questions or concerns, please do not hesitate to contact me. **Charles McDowell** | Environmental Leader | LSB INDUSTRIES, Inc. (NYSE: LXU) | El Dorado Chemical Plant | 4500 North West Avenue, El Dorado, Arkansas 71731 west Avenue, El Dorado, Arkansas 7173. From: Charles McDowell Sent: Friday, September 29, 2023 10:05 AM To: 'water-enforcement-report@adeq.state.ar.us' < water-enforcement-report@adeq.state.ar.us> Cc: 'Richard Healey (adpce.ad)' < Richard. Healey@adeq.state.ar.us>; Keith Long < klong@lsbindustries.com>; Derek Turner < DTurner@lsbindustries.com> Subject: RE: 9/29/2023 Weekly Update Please find attached the weekly update, and updated 2023 water parameters for El Dorado Chemical Company. If you have any questions or concerns, please do not hesitate to contact me. Charles McDowell | Environmental Leader | LSB INDUSTRIES, Inc. (NYSE: LXU) | El Dorado Chemical Plant | 4500 North West Avenue, El Dorado, Arkansas 71731 From: Charles McDowell Sent: Tuesday, September 19, 2023 2:25 PM To: 'water-enforcement-report@adeq.state.ar.us' < water-enforcement-report@adeq.state.ar.us > Cc: 'Richard Healey (adpce.ad)' <Richard.Healey@adeq.state.ar.us>; Keith Long <klong@lsbindustries.com>; Derek Turner <DTurner@lsbindustries.com> Subject: RE: 9/5/2023 Weekly Update Please find attached the weekly update, and updated 2023 water parameters for El Dorado Chemical Company. If you have any questions or concerns, please do not hesitate to contact me. Charles McDowell | Environmental Leader | LSB INDUSTRIES, Inc. (NYSE: LXU) | El Dorado Chemical Plant | 4500 North West Avenue, El Dorado, Arkansas 71731 From: Charles McDowell Sent: Tuesday, September 12, 2023 4:23 PM To: water-enforcement-report@adeq.state.ar.us Cc: Richard Healey (adpce.ad) <Richard.Healey@adeq.state.ar.us>; Keith Long <klong@lsbindustries.com>; Derek Turner <DTurner@lsbindustries.com> Subject: RE: 9/5/2023 Weekly Update Please find attached the weekly update, and updated 2023 water parameters for El Dorado Chemical Company. If you have any questions or concerns, please do not hesitate to contact me. Charles McDowell | Environmental Leader | LSB INDUSTRIES, Inc. (NYSE: LXU) | El Dorado Chemical Plant | 4500 North West Avenue, El Dorado, Arkansas 71731 From: Charles McDowell Sent: Tuesday, September 5, 2023 2:22 PM To: 'water-enforcement-report@adeq.state.ar.us' <water-enforcement-report@adeq.state.ar.us> Cc: 'Richard Healey (adpce.ad)' <Richard.Healey@adeq.state.ar.us>; Keith Long <klong@lsbindustries.com>; Derek Turner < <u>DTurner@lsbindustries.com</u>> **Subject:** 9/5/2023 Weekly Update Please find attached the weekly update and updated 2023 water parameters for El Dorado Chemical Company. If you have any questions or concerns, please do not hesitate to contact me. Charles McDowell | Environmental Leader | LSB INDUSTRIES, Inc. (NYSE: LXU) | El Dorado Chemical Plant | 4500 North West Avenue, El Dorado, Arkansas 71731 # Weekly Report Required by Interim Measures Letter dated 8/4/2023 El Dorado Chemical Company, NPDES Permit Number: AR0000752, AFIN: 70-00040 Weekly Report Date: November 3, 2023 Updated portions are underlined. #### Discharges and Implementation of Emergency Action Plan EDC did not discharge any water through Outfall 001, Outfall 010, or the emergency spillway between when our interim measures plan was initiated on August 9th, 2023 and the 28th. Over the last week, the facility received approximately 0.1 inches of rain, however at the end of the previous week we received 1.3 inches. Lake Killdeer levels are currently at 16.68 feet. EDC is attempting to keep the levels of Kildeer below 17.0 feet. Entering this week, EDC increased our discharge rate to 2.0 MGD due to previous rain, on the
14th, we dropped our discharge rate to 1.0 MGD. In the event of additional rain, EDC will manage the discharge from Kildeer as necessary to ensure water does not overtop the emergency spillway in accordance with the August 4, 2023 Interim Measures letter. # Conduct Daily Sampling of Lake Lee, Lake Killdeer, and Pond 004 EDC commenced this required sampling on August 5, 2023. Updated Information is in the attached 2023 spreadsheet. # Provide Copies of Sampling of Lake Lee, Lake Killdeer, and Pond 004 Since January 1, 2023 Please see the EDC Interim Measures response dated August 9, 2023. ## Corrective Action Plan Activities [updates from the previous week are underlined] During our August 17th conference call we discussed that these proposed activities may trigger a communication to the ADEQ and possible permit changes. We will continue to communicate plans and improvements to obtain ADEQ's guidance on proper permitting. #### Minimize Wastewater Contaminant Loading #### Water Reuse: EDC has evaluated its processes to assess locations where water can be reutilized in processes. Currently we are reusing as much wastewater as possible, that would otherwise flow into Pond 004, and are reusing some water from Pond 004 when the opportunity arises. #### Minimize Wastewater Inflow EDC has diverted approximately 15% of the water flowing into Pond 004. Parts are now on order that will allow us to divert approximately an additional 15% of stormwater from Pond 004. Work has started to prepare to have the valves installed. The valves are expected to arrive in December. It is expected to have these installed and operation by the first quarter of 2023. Additionally, we have started an engineering study to divert additional water away from the Ammonia Nitrate facility. This project will focus on paving in and around the Ammonia Nitrate area. EDC has utilized seven frac tanks to increase the storage capacity of Ammonia Nitrate water to reduce the overflow into Pond 004 from rain events. # Maximize Treatment Efficiency and Capacity Lake Lee Ammonia Stripper EDC continues to operate the ammonia stripper with an approximate 20% efficiency. #### Short Term Treatment of Pond 004 EDC has met with Clean Harbors to develop a short-term treatment system (approximately one year) to provide treatment pending implementation of a permanent solution. EDC has collected samples for Clean Harbors to develop a short-term biological treatment system. Clean Harbors proposed a secondary solution utilizing membrane filtration. This may be a viable alternative; however, it will create a further concentrated wastewater stream that will have to be managed. After further investigation, this process is not viable. EDC met with Black & Veatch, a wastewater consulting firm, to determine the best treatment possibilities for Pond 004. Based on these initial conversations a biological system seems to be the best path forward. The B&V report was attached in the 13 Oct 2023 report. Based on review of the Black and Veatch data, EDC is proceeding with biological treatment of 004, but we are still assessing how to address treatment barriers such as predilution, carbon addition, and sludge generation. EDC has evaluated two existing package plants that would be moved to El Dorado to facilitate biological treatment. This will allow EDC to avoid long lead times on construction of new units and have a solution in place soon. This will probably require permit coverage from ADEQ. Working with Borderland Construction who is developing a cost estimate for disassembling the package plants and shipping them from Arizona to ELD. <u>EDC is attempting to get the units onsite by the end of the calendar year, however with the numerous entities involved this is ambitious and may not be achieved within that timeframe.</u> Working with Black and Veatch to develop a written plan to use these package plants in the setup they are proposing. Provide modifications and changes to adapt these package plants for the El Dorado wastewater contaminants. Once the plans are developed we can propose permit modification to facilitate this. Evaluating siting and location where to put these package plants with internal engineering in a location near the Pond 004 outfall area. Contacted local Geotech engineer in Little Rock to provide estimate for sub-surface geo survey to determine how to design package plant foundations. Additionally, we are evaluating possibilities of reuse of the process wastewater as an input into a product. #### Increased Efficiency in Lake Killdeer Biological Activity Based upon discussion with supplier of nitrification/denitrification bacteria, EDC will begin dosing Lake Killdeer with calcium carbonate or magnesium carbonate to increase the available of carbon and alkalinity in Lake Killdeer. Increasing available carbon should promote additional biological activity to reduce the amount of ammonia in Lake Killdeer and the effluent discharge. EDC has also ordered one ton of lime and will begin dosing Lake Lee with the lime in efforts to increase alkalinity in Lake Lee which flows into Lake Kildeer. #### Baffles in Lake Killdeer EDC selected a vendor to install baffles in Lake Killdeer. As discussed in our August 17th conference call, this should promote longer residence time and further increase biological activity to reduce the amount of ammonia in Lake Killdeer and the effluent discharge. <u>Baffles are expected to arrive in January</u>. The installation is expected to be completed in the first quarter of 2024. # Water Quality Sampling Results Water quality sampling required by the Interim Measures letter is included in the attached 2023 spreadsheet. The increase in ammonia and nitrate in Lake Lee was due to Pond 004 overflowing into Lake Lee from the 11th to the 14th. #### Water Column Profile Measurements EDC has contracted with Alliance Technology Group (formerly GBMc) to complete the profile and sampling of Pond 004, Lake Lee, and Lake Killdeer. The field work was completed on September 28th. #### Other Actions In this call EDC was informed we need to obtain a wastewater operator's license as quickly as possible. Charles McDowell has completed the wastewater operator course work has successfully passed the testing for industrial wastewater operator on the 27th of this month. EDC currently has a third certified operator. Second, ADEQ advised that EDC should coordinate with other Joint Pipeline members regarding discharges and volumes. We have initiated this communication. EDC has contracted Alliance Technology to conduct a bathometric survey of 004. The results of the study indicate that Pond 004 contains approximately 1.5 Million Gallons of water. EDC would like to offer for some of our staff to visit the Little Rock ADEQ office to discuss our corrective actions, permit implications, and the appropriate path forward. If this would be advantageous for ADEQ, let us know when this would work for your schedule. | | | | | | | Kilder | | | | | | | | | | | | LEE (SA | Heur Ce | emposite) | , | | | | | | æ | Plant (SA | Heur Con | posite) | Esta No. | ider Traum
mjäldner | an bain
ianpeak | · · | ireei (Co
(26 Febr | mer of E | *13")
Mi | a reductivi | ny fat m | ner Comp | an Balance | of Spheres | a jithar i | |--|----------------------------|---------------|--------------|--------------|----------------|--------------------|----------|----------|------------------------------------|-------|------------------|---|---|-----------------|---------------|--------------|-----|---------|---------|-----------|----------------------|--------------------------|--------------------------|---------------------------------|---------------------------------|--------------------------|----------------|----------------------|---|--|-----------------------
--------------------------------------|---------------------------------|--|------------------------------|--|-------------------|-----------------------------------|------------------------------|----------------------------------|----------------------------------|-------------|--| | | KD
TAME | KD
TEMP 'C | 10
00 ppm | XID(B10)-pr | KD-COM
COMO | NO.COMP
ROCCLAR | NELCOMP | NO.COMP | MELCOMP
MECCAL LAN
Jie psych | 111 | M KD-Cu
PO-PI | 1 | | LIER
THEP YC | LEE
DO ppm | Labo
Ze p | 1. | METY PA | LEE | 315 | 11 | Lee NO. | Lee No | Les 80 | Less pil | Anterior and (medical) | A Cont | MANO. | | AN pH | 80.a | Comp
pH | ag. 1 | 200 | - | 201 | Ci. | Can C | LAKE | AN 1° | ar sai | 9 | 1104. | | 300
044 | | | | | L | 42.99 | | 80.31 | Zeppe | * *** | , жи | | 1 | | | Zep | - ' | - | - | _ | | | | 100 | 100 | | - | | Ļ | 740 | | 781 | | | | _ | _ | | THE S | | | 1 | | | 10 Hond
10 Tomo
11 Holos
15 There | ey
ing
indep | | | 7.40 | 1013 | 79 | 62 | 107 | 636 | 9.10 | 630 | | | | | 0. | 13 | 10 | 8.36 | 1.09 | a
19
a | 288
289
273 | 266
268
268 | 232
288
108 | 4.00
3.11
6.16
7.60 | 18
60
60 | 64
64
64 | 21 | 20 | 737
726
728
728 | 38
38
18 | 7.83
8.20
8.10 | 611
516 | 9 20
16 17
11 23 | 146
199
136 | 9 | 3 3 | 279
279
279 | 3882
3347
2782
2382 | 284 1
324 1
283 1
264 1 | 100 1
100 1 | 29 | 208 | | UE Product
UP Entered
UE Stands | 17
(in)
27 | | | 7.9 | 107 | 11 | 6 | 100 | 621 | 0.61 | - | | | | | | | e | 121 | 226 | a
a | 100 | 176
126
72 | 108
86
88
73 | 175
186
179
170 | 60
60
60 | 04
04
04 | 18
26 | 96
20
103 | 728
738
722
726 | 1
7
18 | 7.83
8.46
7.88
7.64 | 91
164
71 | 7 24
6 16
6 6
7 | 127
479
281 | 16 | 3 3 | | 2178
1728
1286
1178 | | 99 :
01 : | | 19
23
110 | | U10 Tomo | ing
ming
ing | | | 7.01 | 1114 | | | 100 | | | | | Ì | | | | | | | | a
a | 101
101
23 | 10
14
13 | 110
110 | 7.00
7.00
7.00 | 60
60
60 | 64
64 | 26 | 23 | 7.61
7.68
7.62 | 17 | E-10
E-10 | 22° | 6 8
6 21
6 17 | 179
419
188 | 13
1
19 | 3 | 1008
308
308 | 1443
1486
1279 | 265 E | 930 H
H2 2
H40 2 | | 60
50
50
50
50 | | STE Book | ing
ing
ing | | | 7.36 | 1111 | | 40 | 87 | 8.30 | 0.84 | 611 | | | | | | 4 | 161 | 2.31 | Tes | 4
4
4 | 13
73
63 | 65
66
88 | 72
73 | 125
125
121 | 60
60
60 | 64
64
64 | 10
11
14 | 0
0
0 | 745
747
746
746
746 | 14 | 7.74
8.81
8.69 | N
GI | 1 17
1 17
1 18 | 18
40
48 | 12 | 4 3 | 481
461
462 | G82
G84
G84 | 207 II
188 II
220 II | 60
61
56 | | 17
21
14 | | 118 Medices
119 Thurse
120 Prints
121 Sature | ndej
deg
ey
deg | | | 7.98 | 190 | 10 | 33
21 | 14 | | | | | | | | | | | | | 42
41
40 | 83
83
613 | 104
126
226
236 | 107
87
106
133 | 7.84
7.84
8.85 | 60
13
60 | 64
64
64 | 16
26
16 | 98
22
98
91 | 733
739
721
746 | 9
26
92
61 | 1.02
1.00
1.00 | 10 1
10 1 | 12 15
12 19
17 16
18 16 | 166
608
648 | 15
29
15
15 | 3
4
4 | 276 | 1968
2488
3007 | | 100 1
100 1
100 1 | | 17
28
23
13 | | 120 Sund
120 Mond
124 Toma
126 Medica | er
er
ing | | | 7.49 | GH GH | 10 | 10 | 10 | 6.26 | 221 | £81 | | | | | 0. | d | 144 | £87 | 16.87 | 39
31
30
41 | 10
10
01 | 310
320
310
310 | 107
110
110 | 1.00
1.00
1.00 | 60
60
60 | 64
64
64 | 15
13
8 | 13
11
1 | 742
748
748
745 | 14
14
17 | 1.0
121
1.0
1.0 | 20 2
98 2
234 2 | 01 13
80 11
80 8 | 6.00
6.00
7.20
1.30 | 18
18
10
26 | 3
4
4 | 100 :
276 :
280 : | 2096
2090
2461
2286 | 236 2
163 2
671 2
226 2 | 160 c
160 c
160 c | 1 | 15
13
13
27
18 | | 126 Thorse
127 Polis
128 Balant
128 Bank | day
ry
ing
ry | | | 7.83 | 1280 | Ø | | | | | | | | | | | | | | | 21
20
41
40 | 10 | 312
226
161
162 | 100
127
100
82 | 8.36
8.10
7.86
7.76 | 60
60
60 | 64
64
64 | 11 | 10
10
10 | 7.64
7.62
7.83
7.88
7.32 | 21
13
14 | 8.67
8.60
7.87
6.73 | 90
81 | 00 20
E* 26
B 24
B B | 1.00
4.01
4.12
1.01 | 17
20
20
28 | 2
4
2 | | 2471
2264
2107
2043 | 231 1
163 1
164 1
638 2 | 177 2
164 1
168 1 | | 27
18
14
28
290 | | 120 Monte
121 Toma
21 Wedness
20 Thorse | ing
ing
integ
ing | | | 7.8 | CH | e | 17 | N | 131 | 2.69 | 7.84 | | | | | | | 71 | 245 | 111 | 21
60
48 | 101
101
100 | 100 | 79
79
68
79 | 7.65
7.65
7.30
7.86 | 13
13
67
16 | 64
64
64 | 18
18
28 | 20
20
20
20 | 736
730
741
739 | 32
36
34 | 8.42
8.44
8.70 | SE CE | 0 C | 100
100
100
288 | 29
27
20 | 14
E
3
E | 982 | 1676
2091
1751
1828 | 20 t | 276 9
224 2
270 2
236 1 | | 2013
248
201
27 | | 20 Protect
20 Series
20 Sent
20 Sent | ey
ing
ing | | | 7.8 | GSA
GAN | 110 | e | 73 | 6.21 | 0.84 | 643 | | | | | | 101 | 101 | CRO | 681 | 40
40
38 | (1)
(1)
(2) | 100 | 71
72
73 | 7.36
7.87
7.82 | 60
60
60 | 64
64 | 1 2 | 14
14 | 7.81
7.36
7.33
7.38 | 23
21
18 | 5.54
6.60
6.40 | 236
108
86 | a a
a 30
a 30 | 281
281
217
288 | 24
17
18
18 | 3 3 | 1624
1624 | 1986
1786
1863 | 200 1
734 1
309 1 | 121
120
110 | | 10
10 | | 26 Medicas
29 Thurst
210 Prints | ing
ndeg
day | | | 7.6 | 1284 | 100 | 86 | N
N | | | | | | | | | | | | | ** | G1
G6
G6 | 120 | 130
342
184 | 7.60
6.60
7.62 | 60
64
60 | 64
64
64 | 17
36
38 | 33 | 7.18
7.24
7.34
7.38 | 17
27
24 | 784
873
786 | 90
91 | 0 10
0 40
0 14 | 126
126
126
130 | 17 | 4 | 564
786
2766 | 0744
0841
2014 | 239 8
422 8
280 6 | 944
63
381 | | 22
21
21
22 | | 212 Bond
213 Bond
213 Bond
214 Tond | ey
ey
ing | | | 7.30 | 1310 | | | 76 | 836 | 0.83 | 640 | Ī | | | | ٠ | | un | 2.64 | 637 | 40 | 211 | 206
186
207 | 101
109
109 | 7.64
7.80
7.75 | 60
60
60
60 | 64
64
64 | 12 19 | 64
64
22 | 724
741
734
732
782 | 16
13
16 | 7.68
7.69
7.61 | 60
08
88 | 0 0
0 0 | 288
279
278 | 19
26
26
20
20
16 | 4 | 1888 .
1883 . | 2000
2000
2000 | 200 1
201 1
201 1 | 10 | | 26
16
20
26
28 | | 216 Thorse
217 Freds
218 Seture
219 S. | ing
ry
ing | | | 738 | 130 | | 100 | 10 | | | | | | | | | | | | | 8 8 1 | 100
223
100 | 181
210
167 | 141 | 748
748
110 | 60
63
60 | 04
04
04 | 26
26
16 | 31 | 783
720
786
788
781 | 62
64 | 7.61
7.61
1.61
1.21 | 984
984
995
995 | 28
29
10
10 | 120
120
120 | 13 | 3 3 | 1004 .
179 .
284 . | 2183
2627
2616
2616 | 296 1
236 1
236 1
208 1 | 100 1
100 1 | ŧ | 27
26
16 | | 200 Monte
201 Tomas
200 Medicas
200 Toyana | ey
ing
ing | | | 7.60 | tes | 113 | 120 | H
0 | 6.23 | 0.81 | 6.00 | Ī | Ī | | | | 13 | 108 | LE | 480 | 9 | 10
10 | 128 | 81
83
128 | 7.86
7.79
7.36 | 60
60
60 | 64
64
64 | 18
20
19 | 21
24
22 | 734
731
736
738 | 28
20
24 | 7.86
7.70
7.71
8.64 | 10
10
10
10 | 10
10
10
11
11
12
12 | 116
180
180 | 2
2
8 | 2 4 | 182
208
279
2746 | 1007
1000
1400
1000 | 260 1
262 1
268 1 | 07 1
07 1 | Ħ | 1010
107
30
30
31
31 | | 201 Prote
208 Batters
208 Band
207 Band | eq
(in)
eq | | | 7.0 | 1440 | 116 | 198 | 10 | 6.20 | 0.83 | 640 | I | I | | | | | 77 | 1.30 | 4.00 | 41
42
44 | 100 | 131
117
122 | 121
116
112 | 7.36
7.16
7.16 | 60
61
60 | 64
64
64 | 11 | 13
13 | 7.16
7.34
7.34
7.34
7.34
7.12 | 25
74
99 | 7.72
8.88
7.89
7.70 | 10
10 | 1 20
1 20
1 20 | 2.19
2.30
1.86 | 0
0
0
0 | 4
3
2 | 3488
3786
8861
3878 | 1730
1946
1875 | 202 1
211 1
100 1
273 1 | 148 1
148 1 | | 20
16
16 | | 208 Turnet
21 Medican
20 Thurse
20 Profes | ing
ming
mag | | | 7.36 | 140 | 116 | 130 | 10 | Ė | | | | | | | | | | | | 41
40
42 | 101
107
74 | 196
88
63 | 148
181
126
127 | 6.86
7.17
6.67 | 60
60
68 | 04
04
04 | 21
16
20
7 | 2 2 | 7.34
7.69 | 106
28
27
44 | 7.02
7.88
7.33
7.80 | 200
(21
(00 | 9 48
7 31
10 27 | 149
6.31
190 | - | • | 866
668
761 | 1798
1473
1187 | 264 1
224 1
286 1 | 010
010
010 | | 24
24
25 | | 26 Sensi
26 Sensi
27 Tenni | ing
or
or
ing | | | 7.33 | that | ij. | 131 | 81 | 4.00 | 141 | 511 | | | | | 0. | a | 28 | 1.64 | 632 | 40 | 167
188
188 | 238
686
687 | 93
165
166
166 | 627
688
689
728 | 60
60
60 | 64
64
64 | 26
17
20
18 | 1
1
2 | 736
672
782
781
736
731 | 13
16
26 | 7.81
6.41
6.60
6.82 | 08
01
10 | 1 40
4 44
4 44 | 186
186
186 | 8
8
8
8
8 | 3 4 4 3 | 1179
106
1143
1067 |
3658
2864
2286
(764 | | 204 :
204 :
204 :
204 : | 9 | 23
24
26
16 | | 36 Webser
39 Thorse
310 Profe
311 Seton | nday
day
ey
day | | | 8.23
7.31 | 1673 | 67 | 121 | 20 | | | | | | | | | | | | | 40
41 | 101
101
100 | 138
138
136 | 101
117
121
128 | 7.06
7.06
7.06 | 63
63
60 | 64
64
64 | 25
27
28
16 | 27
27
28 | 723
726
749 | 16
22
33
26 | 7.84
7.82
7.83 | 108
201
201 | 6 26
15 26
15 48 | 126
119
128
229 | 10
10 | £ | 793
777
1061
1016 | 1007
1307
1802
1871 | 210 1
220 1
221 1 | 101
108
148 2 | | 24
24
29
21
44
27 | | 312 Sent
313 Sent
314 Tent
316 Sedner | er
er
ing | | | 7.36
7.86 | 104 | 101 | 130 | N | 8.16 | 1.29 | E.41 | | | | | 6 | id. | | 2.14 | 043 | 20 | 166
202
186 | 226
226
226
226 | 98
67
77
100 | 6.80
6.87
7.00
7.36 | 61
60
60 | 64
64
64 | 26
17
13 | 20 | 7.18
7.26
7.18
7.27 | 27
28
26
18 | 7.63
8.67
7.60
7.86 | 90
91
98 | E 36
10 Et
2 38
E 37 | 100
186
100
101 | 36
20
18
16 | 4 | 1184
1184
187
188 | 1900
2126
2287
2274 | 267 I
268 I
207 I
209 I | 04
149 :
160 | , | 21 | | 316 Thurse
317 Pride
318 Seture
319 Sund | day
ing
ing | | | 7.38 | 188 | 136 | 10 | 29 | | | | ŧ | | | | | | | | | 20
20
41
40 | 100
107
108 | 166
150
130 | 111
108
129
113 | 7.60
7.36
6.86
7.67 | 60
63
60 | 64
64
64 | 16
20
16
11 | 14
14
14 | 736
739
746
733 | 36
67
13 | 7.67
8.62
7.76
8.13 | 65
63
68 | | 180
180
188 | 21
25
19
16 | 3 2 | 1974
1973
1906
1948 | 1944
1718
1867
1888 | | 987 2
91 2
912 2
94 1 | 0 | 17
29
16
13 | | 320 Blook
321 Tomo
320 Blokes
320 Thomas | ey
ing
uday
ing | | | 7.84 | 188 | GE GE | 131 | Ė | 2.14 | 3.0 | 140 | | | | | | | 0 | 8.31 | 645 | 41 | 198
198
72 | 118
118
100 | 100
100
104
207 | 7.30
7.30
7.30 | 60
60
60 | 64
64
64 | 13 | 0 | 7.66
7.33
7.38
7.28
7.26
6.86
7.13 | 18 14 | 8.13
6.60
7.32 | 10
78
20 | 1 11
1 0
1 0 | 279
281
279 | 16 | 3 | 776
1186
1668 | 1018
1018
1628
1224 | 967 :
262 1 | 92 :
648 :
65 : | | 10
10
10
10
10
10
27 | | 308 Between 308 Bernit 307 Warnit 100 Bernit | ing
ing
ing | | | 7.86 | 100 | 63 | 128 | В | 8.14 | 120 | 3.83 | | | | | | a | et | 1.64 | 5.02 | 39
39
40 | 101 | 188 | 101 | 7.14
7.14 | 60
60 | 04
04
04 | 26 | 21 | 786
786
781 | 14 | 7.60
8.16
8.18 | 981
238
279 | 1 0 | 279
279
279 | 20 | 4 | 1301 : | 2014
2014
1829 | 218 1
229 1
278 1 | H2 : | 3 | 2 | | 329 Notice
320 Thorse
321 Print
41 Educat | des
tes | | | 7.G
6.M | 1420 | 104 | 130 | 10 | | | | | | | | | | | | | 40
41
40 | 68
68
70 | 126
126
427 | 140
123
107
93 | 7.66
7.66
7.50 | 60
60
60 | 64
64
64 | 13
18
17 | 9
26
4 | 733
726
736
731 | 16
4
18
36 | 7.85
7.83
8.07
8.36 | ar
or | 4 27
6 46
6 46
8 46 | 180
186
187 | 14
25
26
26
26
26
26
26
26
26
26
26
26
26
26 | 4
8
3
4 | 1104
986
944
1126 | 1863
1654
1654 | 201 II
200 II
241 II | 04 3
90 3
94 3 | | 21
21
22
21
21 | | 40 Bond
40 Bond
64 Tond
65 Bolos | ey
ey
ing
under | | | 7.66 | 1887 | 100 | 122 | 10 | 6.16 | 0.84 | 600 | | | | | 6. | 10 | a | LOI | 311 | 20
20
40 | 79
77
136
148 | 62
101
128 | 116
116
103 | 7.60
7.60
7.66
7.66 | 60
60
60 | 64
64
64 | 14
21
28 | 27
28 | 733
687
739
739 | 36
26
61
18 | 7.64
134
8.90 | 366
567
548
518 | 6 64
6 64
6 65 | 176
186
171
180 | 25
20
20 | 3
6
4 | 1973
1183
1666
1018 | 1162
1967
1967 | 216 II
436 II
368 II | 126 2
116 2
116 2 | | 20 | | 65 Dans
67 Prida
63 Dates
69 Dans | day
ey
day
ey | | | £.E | 1904 | ш | 10 | 73 | | | | | | | | | | | | | ** | 284
262
263
268 | 168
272
330
166 | 103
110
110 | 6.36
6.79
6.36 | 0.7
0.0
0.0 | 64
64
64 | 24
80
21
20 | 31
41
21 | 7.62
7.64
7.68
7.69
7.69
7.69 | 33
64
22
13 | 7.30
7.87
6.87
6.61 | 20
10 | 10 10
7 67
2 80 | 110
179
179 | 20
28
28
28
28 | | 1087 | 1948
2884
3387
2688 | 586 C | 244 | | 23
23
28 | | 410 Bond
411 Tomo
410 Bloker
410 Thomas | ey
ing
uday
ing | | | 7.86 | 1914 | 10 | 16 | N | LH | 3.80 | 100 | | | | | | | 61 | 131 | 674 | 20
20
40 | 101 | 126
126
17 | 154 | 7.00
6.00
6.07 | 60 | 64
64
64 | 12 | 16
14 | 7/4
7/4
7/4
7/4 | 16
28
21 | 578
678
683 | 278
116
627 | 6 12
3 13
7 6 | 1177
1180
1180 | 1 2 | 2 23 | 279
278
206
238 | 1964
1964
1968
1990 | 200 ti
200 ti
200 ti | 94 :
98 : | M
M | 16
21
21
16 | | 416 Bened
416 Bened
417 Month | ing
ing
ing | | | 7.48 | 100 | 10 | 131 | | 8.14 | 1.43 | 437 | | | | | | 0 | 20 | 131 | 382 | 40 | 66
66
83 | 10
38
72 | 162
171
206
272 | 6.34
6.86
6.86
7.00 | 60
68
60 | 64
64
64 | 10 | 0 | 7.11
7.30
7.12
7.22
7.20 | 12
28
12 | 6.76
6.67
7.36
7.21 | 201
101
201 | 8 26
9 30
6 20
7 26 | 108
427
378 | 11
20
18
18 | 3
8
4 | | 954
954
5328
5327 | | 100 C
100 C
100 C | 0
H | 14 | | 419 Wedness
420 Thomas
421 Prints
422 Estent | nday
day
ey
day | | | 6.00 | 1010 | 107 | 131 | 10
84 | | | | | | | | | | | | | 41
40
30 | 26
21
28 | 18
18
18 | 233
198
178
203 | 630
630
630 | 60
66
64 | 64
64 | 16
17
26
26 | 10 | 721 | 9
10
21
21 | 6.60
6.77
6.81
7.23 | 200
220
220
220
230 | 1 21
1 29
10 31
7 67 | 176
430
186
100 | 20
20
29 | 4 4 | | 1042
549
78E | 264 I
264 I | 04 3
86 3 | 3
4
8 | 20
20
21
21 | | 420 Bond
424 Bond
426 Tona
428 Bolos | ey
ey
ing | | | 7.63 | 186 | (3)
(3) | 130 | × | 6.16 | 1.41 | 431 | | | | | 0. | a | а | 2.70 | 8.29 | 40 40 | 20
27
167 | 210
276
176 | 127
129
181
218 | 6.8
6.8
6.8 | 60
60
61 | 64
64
64 | | *************************************** | 736
736
784
783
783 | • | 7.44
7.41
7.47
7.43 | | 3 30
3 30
4 30
3 20 | 141
141
148 | 2 2 2 2 2 2 2 2 2 2 2 | 3 3 3 | 721 :
767 :
738 :
648 | 2348
2487
2482
(764 | 276 (
238 (
227 (
240 (| 61 .
64 . | 3 | | | 427 Thorse
428 Freds
429 Select
430 Sent | ing
ing | | | 6.83 | 1670 | | | | | | | | | | | | | | | | 40
40
40
39 | 164
180
204 | 160 | 162
174
176 | 6.65
6.75
7.63
6.80 | 6.7
6.1
6.2
6.2 | 64
64
64 | 26
26
26
20 | 33
9
9 | 681
782
683
672 | 23
106
18
22 | 2.68
6.83
8.89
7.48 | 201
234
230 | 4 41
4 21
4 21 | 114
14
140
281 | 45
40
16 | 4 | | 1899
2341
2349 | 201 1
203 1
208 1
707 1 | 07 :
60 : | | 22
23
21
24 | | ET Hond
EQ Tomas
EQ Hodges
EX Thomas | ing
ing
integ
ing | | | 4.0 | 1611 | 140 | 122 | 10 | 1.07 | 1.44 | 40 | | | | | | 7 | • | 140 | 611 | 40
40
40
39 | 100 | 133
133
16
17 | 246
196
196 | 5.80
7.68
7.00
6.70 | 60
60
60 | 64
64
64 | 16
17
18 | 96
13
16 | 673
731
738
686
682 | 13
12
14 | 7.40
7.47
7.87 | 271
267
963
222 | 4 N
2 G
2 G
2 G | 167
163
168
179 | 20
28
20 | 3 4 | 1892 - | 2111
2110
1634
1240 | 206 1
221 1
238 1
226 1 | 100 1
100 1
100 1 | 1 | 24
18
28
19
20
28 | | EE Estate E7 Sunti | eg
eg
eg | | | 6.00 | 1613 | 130 | 123 | 11 | | 134 | 3.80 | | | | | | 4 | 97 | 1.80 | 419 | 41
40
40 | 101 | 72
96
81 | 210
162
122 | 6.84
6.84
6.85
6.89 | 61
60
60 | 04
04
04 | 10 | 0
H | 693
786
732
617 | 24
10
18 | 11.54
11.82
8.41 | CII | 1 10
2 10
14 1 | 7.01
6.96
6.96 | 11 | 2 1 2 | 104
223
263 | 1380
1883
1386 | 210 1
204 1
100 1 | 160 2
167 1 | 9 | H H | | 810 Medices
811 Thorse
810 Prida
810 Salari | integ
integ | | | £.81 | 1981 | 122 | 131 | 10 | | | | | | | | | | | | | 0 0 | 361
332
343 | 336
323
206
213 | 12
138
16
171 | 7.65
7.60
7.60
7.60 | 61
61
21 | 04
04
04 | 20
20
26
26 | #
| 7.18
7.22
7.06
7.20 | 34
32
37 | 9.37
7.88
7.84
7.48 | 90
20
20
20 | 8 21
0 30
12 48 | 140
140
191 | 14
20
30 | 3 8 | | 3896
3821
2818
2618 | 268 1
261 1
227 1 | 181
182 | | 30 30 | | S16 Sent
S16 Sent
S16 Tomat
S17 Webset | eg
eg
ing | | | £.80 | 1901 | 100 | | H | 8.96 | 1.61 | 483 | | | | | 6. | | 81 | 2.96 | 101 | 40
40
42 | 107
106
110 | 166
138
100 | 169
162
176
171 | 7.65
7.75
7.60
7.36 | 60
63
60 | 04
04
04 | 19
20
19 | e u | 727
726
738
733 | 14
16
21
23 | 7.83
8.37
7.82
7.37 | 216
267
900
21G | 8 27
7 30
4 36
3 4 | 189
179
180 | 29
29
24
21 | 4
8
4 | 793 .
883 .
889 | 2168
2428
1806
1683 | 271 1
271 1
276 1 | 914 3
948
3
948 3 | , | 22
24
23 | | 818 Theres
819 Prints
820 Setters
821 Sente | day
Ny
Ny | | | 7.63 | 101 | 163 | 145 | | | | | | | | | | | | | | 41
40
40 | 14
74
64
68 | 44
42
13 | 176
176
176
171 | 734
735
648
637 | 60
60
13
60 | 64
64
64 | 30
30
34
35 | 4
0 | 7.44 | 14
14
18 | 224
624
647 | 361
367
367
277 | 3 26
3 13
6 6
3 4 | 448
428
106
110 | 16
16
26
26
26 | 4 | 684
684
1106
1007 | SECT
SESE
CORE
CORT | 288 1
273 1
308 1
273 1 | | ∄ | 25
25
26 | | 820 Hand
820 Tomas
824 Western
828 Thomas | ny
iny
indep | | | 7.40 | CH | 10 | 10 | | 1.16 | 1.29 | 140 | | | | | Ì | | 24 | 3.19 | 836 | 20
20
40 | 100
103
103 | 160
78
88 | 221
206
406 | 6.25
6.75
6.72 | 60
60
60 | 64
64
64 | 17
18
19
20 | 10
10
16 | 7.66
7.63
7.63
7.69
7.64 | 7 | 7.66
7.66
1.73 | 279
388
238
3873 | 2 24
2 24
2 21
7 18 | 536
536
537 | 30
23
24
25
27
29
29 | 3 3 4 | 129 | 245E
267E
6704
5620 | 265 1
263 1
262 1
262 1 | 100 I | - | 23
26
18
26
27
21 | | 126 Profes
127 Estant
128 Sant
129 Sant | ey
ing
ing | | | 6.73 | (76) | u | 122 | 111 | 121 | 0.33 | | I | 1 | | | | | | (0) | 141 | 20
20
20
41 | a
a
a | 20
20
20 | 612
612
312 | 130
137
14
14 | 60
60
60 | 64
64
64 | 4 | 0 0 | E85
E85
703 | 130 | 7.01
2.32
6.89 | 201
201
202 | 1 16
3 16
3 16
3 20 | 6.02
6.02
6.02 | 26 | 2 | 684 :
689 :
1083 :
627 : | 1679
1679
1417
1620 | 24 1
25 1
380 2
289 1 | 66 1
79 1 | 3 | 0 | | 521 Steiner
52 Steiner
52 Freda | enter
dag
dag | | | 6.73 | 1731 | 142 | 19 | 121 | | | | | | | | | | | | | 8 8 8 | 13 | 11 7 | 265
263
275
236
188 | 6.67
7.26 | 60
60
60 | 04
04
04 | 17 16 | 0 | EM
EM
704
EM
EM | 2 2 | 7.68
8.68
7.63
7.63 | 231
231
231
231 | 4 19 2 20 2 2 | 610
618 | 20
20
28
28 | 2 2 2 | 688
667
1913 | 1021
863
880 | 206 1
220 1
206 1 | 000 0
000 0
000 0 | 0 | 12 14 | | EX Danie
EX Head
EX Tenni
EX Tenni | er
er
ing | | | £.00 | 1680 | 107 | 133 | 127 | 6.23 | 1.64 | | Ī | 1 | | | 6 | e e | | £41 | 189 | a
a
a | 10 | 7 7 8 | 227
206
162
206 | | 60
60
60 | 64
64
64 | #
#
|
#
#
| 546
548
7.11
7.18
6.86 | 10 | 7.40
7.47
7.42
7.46
7.40 | 204
238
236
236 | 4 20
2 18
2 18
6 17 | 6.90
1.45
1.47
1.30 | 20 | 2 2 4 | 763
626
647 | EST
ESS
ESS | 236 1
214 1
226 1 | 100
100
100
100 | H
H | 12
13
14
17
18
18 | | 69 Trans
69 Frida
610 Estars | day
ey
day | | | 6.33 | 1411 | 63 | 114 | 141 | | | | | | | | | | | | | #
#
| 18
23
18 | 1 1 10 | 200
200
146 | 720
749
749
746
436 | 60
61
60 | 64
64
64 | 17 16 16 26 | 0
0
1 | 7/8
686
7/8
7/8
689 | 8
13
24 | 7.36
E-48
7.96
E-87 | 304
963
144
388 | 4 17
2 18
2 16
8 30 | 120 | 60
68
68 | 3 3 3 | 661
679
638
796 | 990
961
829 | 284 1
280 1
217 1 | 629 2
627 2
80 3 | 4 | | | 612 Hond
613 Toma | | E | | £41 | 1654 | 104 | 192 | 142 | 8.36 | 131 | 483 | Ī | Ŧ | | | ľ | | 34 | 633 | 644 | 11 | 8 | 2
2
2 | 140
140 | 479
439 | 60
60
10 | 64
64 | 16 | 9 | 783
683
783 | 17
23
23 | 747
687
784 | 100
100
200 | 3 27 | 186 | 34
34
463 | 3 3 | 779
746 | 1082
875
1888 | 228 F
200 F
264 F | 02 : | Ξ | 17
18 | | 616 Policy 646 986 99 122 138 | | 40 CH 100 | 107 7.00 | 60 64 | 9 4 0 | 7 18 727 | | 10 2 1 | 1166 2230 26 | 4 806 38 | 23 7.00 | |--|--|--|--|----------------------------------|--|--|---|---|---|---|--| | 617 Enterlay
618 Desiry
619 Senday
619 Senday
620 Tanaday
620 Tanaday | 0.00 ED 2.00 E.14 | 41 120 116
41 121 198
40 208 198
40 191 182 | 130 7.27
130 7.27
188 7.50
187 7.18 | 60 64
67 66
62 64
60 66 | 20 14 6.8
20 14 7.0
20 15 7.0 | 2 12 7.12
7 14 7.17
8 28 8.89
1 18 7.38 | 90 4 E
333 9 83
98 4 8 | 2 M 64 4
2 M 64 6
2 M 60 6
2 M 60 6 | 100 100 30
1000 1000 30
2079 2014 30
1668 2000 10 | 6 1031 36
7 876 36
2 1338 38
18 1011 6 | 18 700
28 764
63 638 | | 670 Webstedg | | 40 100 140
40 130 120
40 116 120 | 304 7.36
333 6.86
387 7.87 | 60 64
60 64 | 60 31 7A
38 36 73
18 14 7A | 3 17 7.78
1 24 7.14
4 14 7.72 | 200 4 90
400 2 77
274 2 79 | 4 236 HE 4
1 241 HE 4
2 241 HF 4 | 2772 2483 80
1868 2148 67
1872 1827 24 | 0 1514 33
8 1823 38
4 1567 38 | 36 7.46
38 7.46
18 7.69
14 7.69 | | 629 Senday 6.69 1000 130 140 143 6.20 1.33 4.64 627 627 1200 627
1200 627 1 | 9.6E 36 127 381 | 3 6 6
6 6 6 | 100 7.64
100 7.00
100 7.00 | 60 68
60 68 | 13 8 73
18 6 73 | 2 8 744
1 8 156
8 17 748 | 273 4 18
303 3 20
203 6 6 | 1 60 20 1
1 60 20 4 | 736 U24 21
660 1990 27 | 8 1033 18
8 1138 21 | 16 776
1 776 | | 678 Minheadig 678 007 007 122 142 029 1200 1200 1200 1200 1200 1200 1200 | | 40 201 194
40 194 190
40 194 133 | 143 741
146 740
167 746 | 10 64
60 64
60 64 | 67 44 7.4
67 66 7.8
68 G 7.4 | 7 16 7.87
3 61 7.38
3 14 8.00 | 20 4 2
20 4 8
20 4 8 | 100 70 4
1 100 20 4
1 100 27 2 | 1118 1868 26
836 2861 28
2166 2868 28
8628 2866 28 | 8 1934 23
4 1943 23
8 1988 23 | 18 7.48
22 7.69
18 7.76 | | 70 Benday
70 Benday
70 Benday
70 Senday
71 Senday
71 Senday | 881 34 331 677 | 41 100 75
41 86 72
28 62 81 | 167 7.55
149 7.56
158 7.56 | 60 64
60 64
60 64 | 64 01 7.6
67 01 7.0
18 8 68 | 2 11 836
2 16 742
8 13 730
2 12 842 | 228 3 3
179 3 26
179 2 26
227 1 30 | 140 26 4
1 640 26 4
1 671 20 3 | 706 1948 24
928 1754 26
1208 1821 26
1871 1244 26 | 8 987 23
8 997 24
8 1928 24 | 16 740
17 740
18 717 | | 10 Nominated 4.77 1724 150 140 140 178 178 179 | | 40 116 120
40 200 188
40 221 186 | 10 630
173 636
161 742 | 18 08
01 08
02 08 | 15 8 65
17 0 73
10 0 74
18 0 69 | 4 21 183
2 21 7.60
8 38 7.32 | 200 2 30
909 8 48
210 12 79 | 8.08 at 2
1.79 36 3
4.10 83 8 | 1086 1671 27
1000 2880 26
1114 2719 27 | 1 1568 36
7 1931 33
1 1246 36 | 14 680
18 714
16 708
16 688 | | Till Berleitig Till Sendery | 4.86 101 3.83 11.70 | 39 C30 C34
40 C34 C32
39 231 239 | 186 7.66
186 8.21
188 8.76 | 60 64
63 64
63 64 | 68 91 72
68 91 74 | 6 26 7.84
6 28 8.80
1 26 7.37 | 236 2 38
264 6 88
588 7 88 | 18 N 1 | 900 2367 36
1274 2361 36
1263 2794 23 | 7 (184 22
8 (288 21
6 (188 28 | 14 748
18 720
17 731 | | 712 Nominated 644 1782 110 140 130 713 713 713 713 713 713 713 713 713 713 | | 41 06 12
41 241 136
41 110 281 | 72 676
76 648
36 620 | 10 04
10 04
00 04 | 19 01 7.4
37 20 7.3
20 16 6.9 | 0 18 1.00
2 30 10.80
7 16 10.64 | 66 7 20
CS 8 34
68 3 17 | 4.88 20 2
1.88 60 2
4.80 13 2 | 630 966 36
686 3366 63
340 3330 23 | 8 962 E3
0 1169 2396
8 987 36 | 68 747
1000 E11
28 749 | | Titl Beninder
Titl Smider
Titl Smider
Titl Smider
Titl Smider
Titl Smider | 0.60 141 4.11 (0.41 | 39 321 279
40 270 234
40 239 230
40 189 167 | 100 8.20
110 8.30
134 8.36
133 8.00 | 60 64
63 64
63 64
60 66 | 20 14 6.8
21 16 6.6
29 22 6.9
20 18 7.2 | 9 28 8.38
7 33 8.33
6 31 7.82
2 38 8.81 | 10 17 18
10 19 21
08 19 20 | 6.86 10 2
6.86 10 2
1.39 20 3 | 200 2300 20
200 3010 20
600 2726 34
2007 2300 20 | 6 1033 27
8 1143 38
8 1148 321
8 1041 88 | 10 687
20 682
20 789
27 686 | | 719 Nindersday 6.81 163 163 163 164 759 750 750 750 750 750 750 750 750 750 750 | | 41 142 123
40 127 128
41 128 129 | 110 7.60
170 8.17
133 8.66 | 60 66
60 66 | 67 66 72
66 66 72
68 64 73 | 1 13 142
7 8 15.11
3 8 15.11 | 8 20
28 8 18
28 8 19 | 880 7 2
887 8 3
882 6 3 | 768 2000 26
260 2017 26
276 6864 24 | 1148 a
3 1188 a
0 916 23 | 22 721
26 706
16 7.63 | | 700 Benefor 100 Dec | 979 77 249 844 | 40 13 16
40 13 16
40 16 16 | 10 7.0
01 6.6
03 7.0 | 60 64
61 64
60 64 | 15 15 73
12 16 73
12 11 74 | 6 11 7.48
3 18 8.12
6 11 7.28 | 61 I I | 749 E 1
148 E 4
1 EB E B | 124 (123 23
146 (167 24
1274 (167 16 | 0 1033 21
8 843 24
7 867 18 | 15 626
16 636 | | 250 Philosophy | | 40 73 88
40 87 83
40 40 36 | 136 7.30
101 7.63
131 8.56 | 60 66
60 66 | 10 10 74
10 9 77
13 10 69 | 1 11 736
2 18 841
8 8 738 | GS 8 23
GS 12 83
CG 6 8 | 1 217 7 3
1 336 8 4
1 337 6 3 | 236 1366 17
766 1166 16
161 1148 16 | 2 813 16
2 1179 16
0 1036 17 | 16 339
16 338
16 332 | | 120 Berning 120 Berning 120 Canaday Ca | 0.6E SH 1.3E 4.12 | 40 30 16
38 24 10
42 20 13 | 121 6.86
131 7.36 | 60 64
60 64 | 11 8 77
11 8 77
17 8 10
10 10 78 | 6 16 620
2 18 641
6 18 742 | 10 3 ts
10 3 2
18 6 6 | 1 621 7 2
289 7 1
288 19 2 | 288 9004 20
110 929 CT
140 820 21
140 1200 20 | 6 809 00
6 1028 29
8 888 00 | 14 7.47
22 7.49
18 7.78 | | \$2 Nindowskip \$2.77 CD\$ CD\$ 154 151
\$2 Throwskip \$4.78 CD\$ CD\$ 154 151
\$3 Throwskip \$4.78 CD\$ CD\$ 150 151 | 10 | 40 81 38
38 32 16
40 23 8 | 103 7.00
113 8.10
143 7.66 | 60 68
60 68 | G G 78
G G 77 | 8 19 19.34
8 13 8.83
1 11 83 8.33 | 18 4 8
18 2 7
21 8 H | 7.65 10 2
7.60 8 2
6.06 7 2 | 100 1028 21
121 818 22
100 806 10 | 6 1234 28
8 1628 27
8 1288 18 | 18 742
23 744
18 747
14 784 | | 10 10 10 10 10 10 10 10 | ************************************** | # 17 6
38 16 6
43 14 7
40 18 19 | 127 CAS
138 CAS
118 CAS
111 CAS | 60 66
60 66
60 66
63 66 | 10 10 74
11 8 74
10 8 68
10 8 74 | 8 8 627
2 18 636
4 14 670 | ud 2 8
08 2 9
60 4 7
08 7 8 | 640 6 1
676 6 1
701 6 1 | 136 1673 30
146 800 16
130 763 16
667 796 67 | 9 864 00
0 886 07
2 873 08
2 868 20 | 14 784
13 749
12 744
16 745 | | 15 | 7:04 24 7 AR
7:04 28 28 6.50
7:04 28 4 AR
0:04 28 4 AT | 40 100 100
40 131 130
38 97 88 | 10 7.26
106 7.29
167 6.80 | 24 64
60 64
60 64 | 19 C 7A
10 10 73
10 10 73 | 4 13 741
8 11 676
8 7 688 | 140 40 20
216 10 10
106 7 17 | TAP 16 2
68 8 2
7.72 7 2 | 384 (279 34
244 (730 24
380 (814 22 | 7 SET 190
0 SH2 32
8 SH6 39 | 171 687
28 729
36 766
21 682 | | \$12 Servine \$15558 20 5.47 7.0 1988 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | 600AM 28 475
600AM 28 4AM
700AM 29 475 580 54 342 9846
700AM 28 500 | 40 130 131
40 138 131
40 138 148 | 160 7.79
181 7.86
161 7.20 | 60 66
60 66
60 66 | 18 10 74
16 10 74
11 10 78 | 7 833
3 6 828
8 18 728 | 20 E II | 8.49 11 2
7.31 17 3
1 7.30 18 8 | 687 (121 24
636 2000 22
684 2282 18
1002 2272 18 | | 21 682
21 682
28 728 | | 816 Millerado 2418M 29 485 489 485 105 107 02
817 Norskip 8-1886 25 485 485 488 105 105 107
818 Princy 8-1286 29 4.88 488 488 105 105 107 | 7-00AM 26 6.20
7-00AM 26 6.26
7-00AM 26 6.26 | 40 HE 175
40 207 176
28 HE 180 | 97 679
81 677 | 60 64
60 64
60 64 | 6 6 73
H 6 72
12 8 68 | 27 841
6 11 786
8 8 746 | 00 4 4
80 3 88
08 3 88 | 68 4 3
1 18 8 3
1 18 2 3 | 630 2316 48
663 2334 16
776 2867 63 | f 845 6
F 794 21
G 862 26 | 61 744
16 749
16 741 | | 141 162 1634 2 141 148 148 141 141 151
151 | 70000 26 427
70000 27 436 532 66 432 648
70000 27 436 532 66 432 648 | 40 167 73
41 44 51
40 24 51
40 16 57 | 91 731
71 722
68 748
62 746 | 60 66
60 66
60 66 | 10 8 48
7 6 80
16 7 7A
8 7 7A
8 7 7A
8 7 7A
9 7 7A | 1 7 837
4 2 727
5 1 847
9 1 826 | # # H
H
W H | . AB 26 2
1 T.M 80 2
1 T.M 20 3
1 T.M 20 3 | 788 1962 CT
698 878 56
677 880 CT | 9 263 98
7 1587 98
6 1178 96
8 1983 98 | 12 684
12 764
13 726
11 726
12 766 | | \$51 Webselde \$2,500 99 \$18.0 \$4.0 \$100 \$17 \$180 \$12 \$15 \$15 \$15 \$15 \$15 \$15 \$15 \$15 \$15 \$15 | 7:00AM 20 3.67
7:00AM 20 630
7:00AM 30 3.63 | 40 11 26
41 11 16
40 1 20 | 71 740
74 741
347 848 | 60 66
60 64
60 64 | 8 6 73
7 7 78
7 6 78
7 8 73 | 8 8 781
7 6 782
8 4 870 | 100 E 11
56 31 10
36 37 16 | 100 s0 2
1 124 s2 2
1 120 st 2 | 746 762 16
766 486 62
276 860 16 | 9 828 16
9 867 16
3 1121 16 | 12 764
12 726
11 728
18 688 | | 876 Secretary 822048 50 4.70 4.88 1986 19 17
877 Secretary 847248 70 4.79 7.26 1620 150 160
852 Secretary 84248 50 4.00 4.89 1988 150 160 150 150 150
879 Tenney 85488 50 4.00 4.89 1988 150 150 150 150 150 150 150 150 150 150 | 0.0000 20 4.00
0.0000 20 4.00
7.0000 20 4.00 0.00 70 1.21 3.71
7.0000 20 4.72 | 29 14 E
29 14 E
42 13 9 | 101 7.01
101 7.01
101 7.01 | 60 64
60 64
60 64 | 7 8 73
7 8 73
8 7 23
8 8 73 | 2 21 7.89
1 6 7.28
2 7 7.78
8 1 7.62 | 10 4 8
10 2 1
10 18 14
20 4 18 | EN 12 1
EN 12 1
EN 26 2 | 334 888 64
308 796 63
886 798 68
886 770 63 | 8 800 16
8 801 16
2 1001 17
8 834 16 | 10 686
10 689
14 715
12 744 | | 870 Websteld SEAR 27 196 432 198 9 14 12
87 Thomas 27 27 177 487 188 19 10 10 12
88 7 Policy 82368 27 8 8 7 7 1 10 10 10 10 10 | 7-00AW 26 4.56
7-00AW 26 4.56
7-00AW 23 6.79 | 43 11 7
41 10 8
38 10 7 | 180 7.80
180 7.80
173 7.80 | 00 04
00 04
00 04 | 7 8 7A
6 6 73
6 4 7A | 4 4 728
8 8 743
8 7 787 | 28 4 9
28 4 3
33 16 11 | 1 171 so 3
7 18 so 3 | ESE 149 E2
ESS 751 E2
ESS 76E ES | 9 882 14
6 876 13
2 1088 11 | 11 EH
11 EH
1 TIS | | 102 Serving 0.0048 22 5.00 7.00 102 10 10 10 10 10 10 | 54444 20 4.15
64444 20 4.16
63648 20 346 534 50 643 (8)
547aa 20 520 | 20 1 4
42 7 2
20 4 2
42 14 8 | 210 7.26
184 7.26
186 7.29 | 60 64
60 64
60 64 | 4 3 73
4 2 73
6 3 70
13 8 72
6 4 70 | 0 1 7.30
0 1 7.30
0 1 7.46 | 30 3 8
38 3 6
38 6 7
28 6 17 | 118 45 1
127 80 2
128 81 2 | 507 775 50
591 754 90
591 754 50
600 756 60 | 0 1166 11
8 832 11
4 919 12
4 848 6
9 836 8 | 7 631
7 633
7 633
12 631
1 636 | | 98 Wolvestig SCAR 29 T.R. 4.89 446 152 41 42 42 43 43 43 43 43 43 | 0.2048 27 476
0.2048 28 487
0.2048 28 4.89 | 43 14 8
43 13 7
40 8 6 | 100 E.H
131 E.M
111 7.67 | 60 66
60 66 | 6 3 70
6 4 73 | 6 6 739
2 6 720 | 10 E 15
10 E 15 | 1 100 en 3
6 607 30 3
6 607 37 3 | 68 64 11
69 64 12
60 78 14 | 9 836 E
8 833 'S
7 801 'S | 1 671 | | 80 Borology 850508 26 457 7.5 459 48 76
810 Borology 850508 26 454 458 4564 56 45
811 Borology 870508 27 7.20 7.57 4565 67 82 12 42 4.57 4.38 3.60
812 Borology 870508 27 7.20 7.57 4465 67 82 12 12 4.07 4.38 3.62
812 Transport 855008 26 458 7.50 438 56 12 | 20088 20 6.12
20088 20 6.12
70088 20 620 0.89 66 1.26 3.87
70088 23 6.87 | 40 24 12
40 24 12
40 26 11
41 22 18 | 84 728
84 728
85 728
166 728 | 50 54
50 54
50 54 | 19 8 73
19 2 74
7 4 74
11 19 74 | 1 4 731
1 4 731 | 6 4 20
03 7 16
03 1 18 | 136 HE2 4
1 640 26 2
1 746 27 3
1 726 20 3 | 564 764 CI
564 779 CI
585 779 CI
622 886 88 | 8 827 C
2 810 CH
6 827 4 | 18 678
11 686
12 678
28 680 | | 813 Madesale 20768 35 4.00 4.07 130 10 15 35 35 35 80 80 80 80 80 80 80 80 80 80 80 80 80 | 70088 24 527
70088 24 526
70088 24 526 | 40 18 14
40 27 18
43 20 14 | 106 7.26
106 7.26
88 7.20 | 64 64
63 64
60 64 | 16 01 7.6
17 01 7.2
16 01 7.2 | 3 22 7.89
3 21 7.31
2 28 2.11 | 141 14 20
CB 12 38
CK 6 20 | 6.80 28 3
1.80 36 3
1.60 36 3 | 64 87 20
838 60 28
848 800 28 | 3 1066 8
1 1016 4
7 1046 38 | 27 648
27 648
24 648
18 674
21 641 | | STE Description 0.0188 20 0.00 4.80 1.31 50 7.3 STE Description 0.0188 2.0 1.50 1.80 1.31 2.0 7.1 STE Description 0.0188 2.0 1.50 1.80 1.31 2.0 7.1 STE Description 0.0188 2.0 0.00 0.00 1.00 0.00 | 7-0048 20 7.85
7-0048 20 5.85 0.80 65 5.81 6.64
7-0048 20 5.70 | 29 61 4
41 28 6
40 24 4 | 10 649
19 7.6
16 7.6 | 60 68
60 68 | 16 13 72
17 96 7A
19 17 72
19 18 73 | 1 10 7.38
7 12 6.87
8 16 7.38
7 12 7.34 | 134 2 21
118 2 21
148 3 22 | 6.86 20 2
6.60 26 3 | 717 1088 23
691 1088 38
688 500 38
687 888 27 | 8 860 28
8 878 28
1 868 28 | 21 641
21 631
21 641 | | 450 Noticeards SALAM 50 430 430 431 131 131 131 131 131 131 131 131 131 | 7-0048 22 4.86
7-0048 24 6.86
6-0048 23 4.76 | 43 23 4
38 34 6
41 28 17
62 23 3 | 10 726
10 726
10 726 | 60 64
61 64
60 64 | 20 20 73
20 07 73
13 11 73
18 16 70 | 2 76 7.33
8 38 7.88
6 18 7.88 | 207 2 26
207 2 26
209 2 28 | 6.00 20 2
6.00 20 4 | 661 600 21
661 600 21
668 600 20 | 0 1034 27
0 1034 27
0 1183 20
0 883 24 | 23 Tak
23 Tak
16 Tap | | 570 Sensing 350AM 20 110 440 130 46 46
570 Sensing 150AM 20 110 470 130 46 40 132 48 5.0
570 Tenning 860AM 20 447 4.75 132 51 64 | 800AW 26 8.12
700AW 24 808 874 81 5.27 381
700AW 24 7.04 | 40 26 3
46 24 64
39 24 12 | 120 7.00
142 7.00
110 6.79 | 60 64
17 64
63 64 | 69 66 73
26 20 73
31 24 72
51 60 74 | 9 21 814
3 24 7.23 | 160 2 30
200 11 48
160 6 55 | 1 6.88 28 2
1 130 10 8
1 136 80 4 | 509 505 28
706 569 36
810 566 36
1014 768 58 | 8 1942 27 | 18 630
28 676
36 682
27 680 | | \$20 December 2020 5 6.00 5.77 5.00 50 50 50 50 50 50 50 50 50 50 50 50 5 | 7000E 26 840
7000E 24 8.55
7000E 24 8.55 | 40 27 18
40 28 9
40 79 8
38 82 3 | 18 728
18 729
18 720 | 60 68
60 68 | 26 20 7.3
26 46 7.2
26 56 7.6
26 20 7.6 | 4 207 484
8 46 684
8 27 7.84 | 28 4 6
28 4 6
80 2 8 | 18 20 4
6/0 20 3 | 830 800 33
770 888 26
822 1192 26
1124 1049 36 | 1 2/24 27
7 1241 28
8 1127 27 | 22 688
18 681
22 689 | | 100 Senior CASAM 27 4.00 5.00 170 180 75 100 | 8-06ARR 27 8.24
7-06ARR 27 8.36 8.77 84 1.30 8.23
7-06ARR 27 8.82 | 40 28 1
40 28 3
39 21 14 | 166 4.20
160 7.66
166 7.52 | 60 66
60 66 | 19 7 79
8 8 72
7 8 73 | 1 19 723
1 1 730 | 221 2 88
367 4 26 | 121 30 2
140 36 2
1 741 19 2 | 107 108 10
178 100 10
179 100 10 | 4 862 96
8 8196 98
8 8187 93 | 10 687
10 740 | | USA PRINCIPLE ALLERS AND ALLER S. | 70088 24 62V
70088 24 62V
70088 21 488 | 38 15 13
43 16 6
38 34 13
43 26 8 |
10 4.0 | 64 64
63 64
60 64 | 12 7 7.8
8 7 6.6
4 4 6.8 | 6 74 683
6 28 622
8 8 636
8 64 648
7 8 746 | 10 10 17
10 10 27
10 1 10 | 6.86 17 2
188 35 2
6.78 88 4 | 200 805 10
410 865 17
160 779 16 | 6 1208 26
8 814 27
8 813 18 | 15 EH
26 E75
13 E41 | | 108 Beniny BOAM 26 4.08 4.31 128 15 46 15 15 15 16 16 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 80088 17 408
70088 14 8.11 978 84 1.48 444
70088 18 4.80 | 28 34 12
42 26 8
42 33 4
41 28 4
42 18 8 | 107 6.86
108 6.68
108 7.06 | 60 64
60 64 | 8 7 64
6 4 68
6 4 68
8 6 73
20 20 74 | 8 81 E48
7 8 7.48
8 8 7.47 | 13 3 13
148 3 16
168 3 38 | 4 4 3 3 3 3 4 3 4 5 4 5 4 5 4 5 4 5 4 5 | 246 825 14
286 756 16
721 750 26 | 1 1160 7
0 814 18
2 801 29 | 11 641
18 673
23 672 | | 10/22 Thomoday 8.0748 22 4.89 4.80 5362 51 59
10/22 Printy 8.0848 22 4.80 4.80 536 51 50
10/24 Revising 0.0488 22 7.20 5.00 7.00 50
10/24 Revising 0.0488 22 7.20 5.00 7.00 73 50 | 7-0048 50 621
7-0048 50 620
11-0448 21 687 | 42 14 E
39 16 E
39 16 4 | 188 7.00
127 7.21
128 7.69 | 60 66
60 66
60 66 | 16 10 73
17 14 73
27 33 78 | 8 11 7.40
8 12 7.38
6 6 7.10 | 81 2 33
- 3 38
21 2 38 | 1.28 26 3
6.67 26 3
6.20 18 3 | 768 880 26
810 768 27
836 806 27 | 2 760 23
k 790 28
3 866 21 | 18 691
18 683
23 681 | | Single Rooting 11-05584 20 4.82 4.83 1.73 13 12 13 12 13 13 13 1 | 70048 18 641 548 77 1.20 346
70048 18 641 548 77 1.20 346
70048 18 645 | 60 18 1
40 16 8
60 17 4 | 83 738
83 738
88 730
88 738 | 60 64
60 64
60 64 | 15 11 73
13 8 7.8
18 C 7.8
26 20 7.6 | | 10 1 40
101 2 47
101 4 11 | 6.63 20 1
6.67 16 2
7.18 20 2
7.36 17 2 | 808 768 28
1064 760 28
1004 760 28 | 9 823 20
7 910 17
6 876 23
8 1938 28 | 13 686
13 686
18 686
24 683 | | 50'B Threeding 8584K 20 7.5K 4.8 51% 77 51
50'B Friday 2 5184K 27 7.57 4.77 4.28 77 12 22
50'D Remoting 7384K 22 7.77 4.0 118 66 46 | 7:00xxx 10 0.00
7:00xxx 10 0.07
7:10xxx 24 0.00 | 40 17 8
40 18 6
38 20 3 | 99 7.61
82 7.56
68 7.20 | 60 66
60 64
60 64 | 26 27 7.6
29 27 7.6
26 23 6.8 | 6 12 876
2 11 782
6 18 729 | 30 6 e7
85 3 68
77 2 60 | 7.27 16 4
7.28 16 2
7.18 16 2 | 854 800 36
880 774 27
910 764 34 | 2 (2/8 2)
3 860 33
3 2/26 28 | 26 6.05
29 6.07
26 6.76 | | GCG Bonday BASSAN 20 730 436 1602 70 44
 SCG Bonday BASSAN 20 4.78 4.68 160 60 45 161 4.69 6.81 60 45 60 60 60 60 60 60 60 6 | NOMES 21 E.S. SEE 100 C.S. EAS
BALLES 20 E.S. SEE 100 C.S. EAS
BALLES 20 E.S. SEE 100 C.S. EAS
BALLES 21 E.S. SEE 100 C.S. C | 41 24 3
40 21 1
41 14 2 | 74 7.58
80 7.60
84 7.58
121 7.50 | 60 64
60 64
60 64 | 26 0 6.6
26 0 6.6
26 2 6.6
18 10 6.2 | 2 11 7.21
2 2 7.31
2 4 8.81
4 71 4.76 | 10 3 4
10 2 4
80 14 18 | 7.00 to 1
7.00 to 1
7.00 to 1 | 200 668 20
170 860 21
211 861 21
136 808 26 | 2 800 34
8 874 36
1 801 36
8 1367 18 | 25 EAS
26 EAS
21 EAS
10 EAS | | 1902 Thronkey & STAM 27 6.71 6.34 1142 31 62 120 1302 February & STAM 27 6.71 6.34 1142 31 62 130 130 130 130 130 130 130 130 130 130 | 8:26am 24 429
8:0748 22 6:77
6:0048 23 6:12 | 40 Et 8
38 60 13
40 68 13 | 123 7.86
142 8.12
128 11.88 | 00 04
10 04
00 04 | 6 4 7A
16 13 7A
28 34 7A | 8 st 7.12
4 14 19.38
2 st 19.39 | 1 1 1
71 13 30
6 4 11 | TAN 11 1
LB 27 2
END 11 2 | 127 874 16
839 1001 22
137 2128 67 | 0 4888 68
7 8847 40 | 24 674
81 686
24 688 | | 0.00 Booky 0.0048 25 4.27 4.67 10.0 4 41 42 42 42 43 43 43 43 43 | 70088 16 ER2 522 161 E40 600
70088 7 E82 522 161 E40 600
70088 7 E85 | 41 25 4
44 26 4
40 31 11
40 23 8 | 100 1030
100 1030
101 130 | 61 64
63 64
63 64 | 26 96 74
16 96 74
19 96 78 | 4 23 331
4 23 338
6 23 388 | 236 6 88
236 8 16
03 4 19 | 1 100 46 3
1 46° 16 3
1 14° 10 3 | 188 2018 C
168 1025 3a
248 820 31
268 762 30 | 1 1007 10
9 1079 26
4 1162 23
7 786 16 | 15 EAL
15 T43
17 T16
13 T32 | | 110 Therefor ACAMA 16 Aut 7.88 117 44 45
115 Princy ACAMA 16 Aut 7.66 118 46 45
114 Salvely ACAMA 18 1442 7.61 108 46 45 | 70088 6 679
70088 8 629
81888 10 630 | 40 17 7
41 18 13
40 8 13 | 88 5.30
88 7.76
108 8.40 | 60 64
60 64 | 8 8 73
10 10 72
8 8 73 | 8 8 683
8 87 738
1 8 836 | 79 4 8
60 6 7
90 6 8 | 106 8 2
6.88 8 2
6.62 10 1 | 165 665 C
160 675 H
164 626 H | 1 490 16
4 704 16
4 779 16 | 10 114
13 130
10 680 | | CEX Emission D-2046 VI CER 7.00 CER 1.00 CER C | 70088 18 5.79 528 79 5.46 5.27
70088 18 4.21
70088 22 4.61 | 0 1 1
0 1 1 | 16 7.39
71 8.31
66 8.41 | 60 64
60 64
60 64 | 1 1 72
1 1 72
1 7 74 | 0 6 688
7 9 786
8 8 688 | 00 2 6
80 4 7
88 2 6 | 680 9 1
686 9 1
786 19 1 | 180 876 16
130 690 17
138 607 18 | 0 60 16
1 60 16
1 60 16 | 13 EH
13 EH
14 E71 | | 118 Sweeding SCAM 20 5.0 7.36 902 61 65
1078 Frey SAM 20 73 73 721 908 61 61 62
1078 Sweeding SCAM 98 5.65 724 908 61 62 62 | 7:00488 22 8.14
6:00488 14 6.26
6:30488 16 4.80 | 41 11 6
48 23 12
29 162 77 | 71 8.56
88 7.48
88 6.79 | 00 08
10 08
00 08 | 1 7 72
18 8 74
1 7 72 | 1 16 6.77
2 30 6.69
1 26 6.66 | OH 6 14
OH 14 21
OH 6 21 | 6.00 16 2
6.00 26 2
6.00 26 1 | 228 637 96
268 7% 23
262 6360 26 | E 768 14
9 846 17
8 879 14 | 11 EH
11 EH
11 EH | | 1072 Sensing 2-02.00 17 8.50 2.33 1084 10 10 110 2.30 1.50 2.31 1084 10 10 10 10 10 10 10 1 | 54648 13 540 528 57 540 438
535= 13 440
64648 18 547 | 20 10 14
20 21 20
20 21 11 | 97 7.27
97 7.88
94 7.81 | 60 66
60 66
61 66 | 8 8 64
19 8 62
19 8 73 | 1 10 663
8 10 663
2 16 872 | CO 2 9
CO 2 9
CO 2 8 | EM 10 1
EM 10 1 | 214 1021 C
203 798 C
218 798 18 | 1 773 11
8 600 6
8 841 15 | 8 639
8 686
12 726 | | 10102 December 2-104500 17 0.000 1.0 | 5-354W 16 5-56
5-55aw 16 5-66 | 29 41 11 | 165 7.85
367 7.26 | 61 66 | 13 91 72
211 e 68 | 8 19 642
6 42 648 | 03 4 6
60 4 33 | 686 13 2
11/2 68 1 | 206 715 21
206 684 68 | 1 768 19
7 648 264 | 13 T 10
41 E 10 | | 102 Seeing 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1.00 | | | | | | Ħ | | | | | | 1033 There day | | | Ħ | H | | Ħ | Ħ | Ħŧ | | | Ħ | | 1027 Standay | 1.00 | | | | | | Ħ | | | | | | 100 Prince P | | | Ħ | H | | Ħ | Ħ | H | | | Ħ | | SN Streety | 1.00 | | | | | | Ħ | | | | | | GR Priday
GR Selecting | | Ħ | Ħ | ĦĦ | Ħ | H | Ħ | ĦE | | Ħ | Ħ | | | 12/10 1 | | | | | | | | | | | | | | | | | _ | | _ | Т | | _ | Т | T | Т | т | П |
--|----------|----------|--|--|--|--|--|----|---|--|---|------|--|--|--|--|--|---|---|---|---|--|---|---|---|---|---|---| | 10 Note | | | | | | | | 10 | | | | E.00 | | | | | | _ | | _ | Т | | _ | Т | T | Т | т | П | | TO THE COLUMN | | | | | | | | | | | | | | | | | | _ | | _ | Т | | _ | Т | T | Т | т | П | _ | | _ | Т | | _ | Т | T | Т | т | П | _ | | _ | Т | | _ | Т | T | Т | т | П | _ | | _ | Т | | _ | Т | T | Т | т | П | | Table | | | | | | | | | | | | | | | | | | _ | | _ | Т | | | Т | T | Т | т | П | _ | Т | | | Т | T | Т | т | П | | | | | | | | | | 10 | | | _ | E.00 | | | | | | | | _ | Т | | | Т | T | Т | т | П | | 12 Nes | 12/19 7 | April 1 | | | | | | | | | | | | | | | | | | _ | Т | | | Т | T | Т | т | П | | 50 No. 1 | 1206 994 | aprended | | | | | | | | | | | | | | | | | | _ | Т | | | Т | T | Т | т | П | | 101 102 102 102 102 102 102 102 102 102 | 1201 1 | Š | | | | | | | | | | | | | | | | | | _ | Т | | | Т | T | Т | т | П | | 20 has | 1203 | Printer | | | | | | | | | | | | | | | | | | _ | Т | | | Т | T | Т | т | П | | 103 Res. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | _ | | | | | | | | | _ | _ | _ | _ | | _ | ㅗ | | | _ | _ | | UK Inde | | | | | | | | | _ | | | | | | | | | _ | _ | _ | _ | | _ | ㅗ | | | _ | _ | | 92 Notes | | | | | | | | 10 | _ | | | E-00 | | | | | | _ | _ | _ | _ | | _ | ㅗ | | | _ | _ | | 100 Sector S | ISSE Princy | | | | | | | | | | | | | | | | | | _ | | _ | Т | | _ | Т | T | Т | т | П | _ | | _ | Т | | _ | Т | T | Т | т | П | | 109 String | | | | | | | | | | | | | | | | | | _ | | _ | Т | | _ | Т | T | Т | т | П | | | 12/38 8 | Ş | | | | | | | | | | | | | | | | _ | | _ | Т | | _ | Т | T | Т | т | П | _ |